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Abstract. We investigate the transient-current characteristics of a quantum dot coupled to two
leads through two time-dependent barriers. A general formula for the time-dependent current
j (t) is derived by using the nonequilibrium-Green-function technique. Two particular cases,
those of rectangular-pulse modulations and harmonic modulations imposed on the two barriers,
are studied in detail. For the rectangular-pulse modulations, a turnstile effect is obtained if the
full width of the resonant state(0) is much larger than the frequency(ω), i.e. 0 � ω; and the
special behaviour of the transient currentj (t) is attributed to the phase coherence due to the
time variation of the barriers. For the harmonic modulations, we find that a new energy scale
h̄ω emerges if0 < ω, and the main resonant peak is split into two peaks.

1. Introduction

The study of quantum transport in mesoscopic systems has received considerable attention in
the past decade, not only because of the fundamental physics, but also because of the great
potential as regards the new generation of electronic and photonic devices. The transport
properties studied so far have been mainly related to steady-state processes. Recently,
time-dependent transport phenomena have begun to attract more and more attention. The
essential feature of the mesoscopic physics is the phase coherence of the charge carriers.
For the time-dependent processes, generally, the external time-dependent perturbation affects
the phase coherence differently in different parts of the system [1]. A new energy scale
h̄ω in the time-dependent problem has been introduced. A multitude of new effects have
been observed, for example: photon–electron pumps, the sideband effect, turnstiles, the ac
response in resonant-tunnelling devices, and so on.

As regards the theoretical aspects, Tien and Gordon studied the effect of microwave
radiation on superconducting tunnelling devices back in the early sixties [2]. Since then,
different theoretical approaches have been developed, such as those of the time-dependent
Schr̈odinger equation [3–5], the transfer Hamiltonian [6, 7], the Master equation [8, 9], the
Wigner function [10], and the nonequilibrium-Green-function method [1, 11–13].

In this paper we consider a quantum dot coupled to two leads through two time-
dependent barriers, and study the time-varying characteristics of the current through the
system. Unlike in most of the previous work in which the time-dependent external fields
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are applied either to the leads or to the quantum dot [9, 14–16], here it is only to the
barriers that the time-dependent external fields are applied. We assume that the changes of
the heights of the two barriers do not affect the single-electron energies in the two leads and
the dot, i.e. that all of the single-electron energies are still time independent. It should be
mentioned that when time-dependent external fields are applied to the leads or to the dot, the
phase of the electron wave-function will change from exp[−iε(t−t ′)] to exp[−i

∫ t
t ′ dt1 ε(t1)]

[13]. However, when time-dependent external fields are applied only to the barriers, we
find in this work that two main differences occur: (1) when the electron tunnels through
the barrier, the phase changes from a time-independent value to a time-dependent one; and
(2) the time variation of the barriers affects the tunnelling probability, destroys the steady
state established originally, and produces an extra phase difference between the states on
either side of the barrier.

It has become possible to modulate the heights of barriers experimentally [17–19], and
an interesting effect—the turnstile effect—has been observed to occur when the barriers
change periodically [17, 19].

In this work we first use the nonequilibrium-Green-function method and the transient
transport theory of references [13] and [1] to derive a general formula for the time-dependent
current j (t). Then we study two particular cases: (1) a rectangular-pulse modulation is
applied to each barrier, but the two modulations are out of phase (with a phase difference
of π )—the turnstile effect is obtained if0 � ω, and a special behaviour of the transient
currentj (t) emerges which can be explained as a phase coherence effect due to the time
variation of the barriers; (2) instead of the rectangular-pulse modulations, two harmonic
modulations with a phase difference ofπ are applied to the barriers. We find that a new
energy scale ¯hω emerges if0 < ω, and the main resonant peak splits into only two peaks,
and not a set of peaks as for the usual sideband effect case [9].

The outline of this paper is as follows. In section 2, the model is presented and
the Keldysh nonequilibrium Green function is used to derive the time-dependent current
formulae. In section 3, we study the case with rectangular-pulse modulations. In section 4.
the case with harmonic modulations is discussed. A brief summary is presented in section 5.

2. The model and formulation

The mesoscopic system under consideration is a quantum dot coupled to two leads through
two time-dependent barriers. This system can be described by the following Hamiltonian:

H(t) = Hlead +Hdot +HT (t)
where

Hlead =
∑
k∈L

εka
†
kak +

∑
p∈R

εpb
†
pbp

Hdot = ε0c
†c

HT (t) =
∑
k

Lk(t)a
†
kc +

∑
p

Rp(t)b
†
pc + HC.

(1)

Hlead models noninteracting electrons in the leads, anda
†
k (ak) andb†p (bp) are the creation

(annihilation) operators of the electron in the left-hand and right-hand lead, respectively.
Hdot describes the quantum dot. For simplicity, we only consider a single state in
the quantum dot, and neglect the intra-dot electron–electron Coulomb interaction. The
tunnelling part is denoted byHT (t), which is the only part with time-dependent behaviour.
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εk, εp, and ε0 are the single-electron energies, corresponding to electrons in the left-hand
lead, right-hand lead, and the dot, respectively. We assume that these energies are not
affected by the time-dependent external fields applied to the left-hand and right-hand barriers.

In the following we derive the general time-dependent current formulaj (t) by using the
nonequilibrium-Green-function technique and the theory by Wingreen, Jauho and Meir given
in references [13] and [1]. The current tunnelling from the left-hand lead to the quantum
dot can be calculated from the evolution of the occupation number operatorNL =

∑
k a
†
kak

for the left-hand lead. One readily finds (in units in which ¯h = 1)

jL(t) = −e〈ṄL〉 = −ie〈[H,NL]〉 = 2eRe
∑
k

Lk(t)G
<
0k(t, t). (2)

Here we have defined the Green functionG<
0k(t, t

′) asG<
0k(t, t

′) ≡ i〈a†k(t ′)c(t)〉. With the
help of the Dyson equation, it can be written as

G<
0k(t, t

′) =
∫

dt1 L
∗
k(t1)

[
Gr

00(t, t1)g
<
k (t1, t

′)+G<
00(t, t1)g

a
k (t1, t

′)
]

(3)

whereGr
00(t, t1) ≡ −iθ(t − t1)〈{c(t), c†(t1)}〉, G<

00(t, t1) ≡ i〈c†(t1)c(t)〉, andg<k andgak are
the exact Green functions of the electron in the left-hand lead without coupling between the
leads and the dot. Substituting the expression forG<

0k(t, t) into equation (2), the discrete
sum overk in

∑
k can be changed into an integral with the help of the density of states in

the left-hand lead,
∫

dε ρL(ε). Then the currentjL(t) becomes

jL(t) = −2e
∫ t

−∞
dt1

∫
dε

2π
Im
{
e−iε(t1−t)0L(ε, t1, t)

[
G<

00(t, t1)+ fL(ε)Gr
00(t, t1)

]}
(4)

where0L(ε, t1, t) ≡ 2πρL(ε)L(ε, t)L∗(ε, t1), andfL(ε) is the Fermi distribution function
of electrons in the left-hand lead.

In the following we assume that: (1) one can factorize the energy and the time
dependence of the tunnelling coupling asL(ε, t) = L(t)VL(ε) andR(ε, t) = R(t)VR(ε);
and (2) the wide-band limit can be used in the calculation, which means that the energy
level width of the quantum dot due to the tunnelling between the dot and the two leads
can be taken as an energy-independent constant, i.e.0L(ε) = 2πρL(ε)VL(ε)V ∗L(ε) and
0R(ε) = 2πρR(ε)VR(ε)V ∗R(ε). Then the formula for the currentjL(t) can be reduced to

jL(t) = −e{0L(t)N(t)+ B(t)} (5)

where0α(t) ≡ 0α(t, t) = 0α|α(t)|2, α = L,R, N(t) = ImG<
00(t, t) is the occupation of

the electrons in the quantum dot, andB(t) is defined as

B(t) = 0L Im
∫

dε

π
fL(ε)

∫ t

−∞
dt1 L

∗(t1)L(t)eiε(t−t1)Gr
00(t, t1)

= − 0L Re
∫

dε

π
fL(ε)

∫ t

−∞
dt1 L

∗(t1)L(t)

× exp

(
i(ε − ε0)(t − t1)−

∫ t

t1

dt2
2

[0L(t2)+ 0R(t2)]
)
. (6)

From the Keldysh equation forG<
00 which reads

G<
00(t, t

′) =
∫

dt1

∫
dt2 G

r
00(t, t1)6

<(t1, t2)G
a
00(t2, t

′) (7)

one finds

N(t) = 0L
∫

dε

2π
fL|AL(ε, t)|2+ 0R

∫
dε

2π
fR|AR(ε, t)|2 (8)
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where fR(ε) is the Fermi distribution function of electrons in the right-hand lead, and
Aα(ε, t) is a compact notational form, defined as

Aα(ε, t) = −i
∫ t

−∞
dt1 α(t1) exp

{
i(ε − ε0)(t − t1)−

∫ t

t1

dt2
2

[
0L(t2)+ 0R(t2)

]}
(9)

in which α = L,R. From equations (5), (6), (8), and (9), we can evaluate the time-
dependent currentjL(t) for the two barriers modulated by arbitrary time-dependent external
fields. In the following we shall study two particular cases: rectangular-pulse modulations
and harmonic modulations.

3. The response to rectangular-pulse modulations

3.1. Basic formulae

In this case a periodic rectangular-pulse external field, with periodT , is applied to each
barrier, but the two fields are out of phase (with a phase difference ofπ )—L(t) andR(t)
are as follows:{

L(t) = 1, R(t) = 0 06 t < T/2

L(t) = 0, R(t) = 1 T/26 t < T .

Hence0L(t), 0R(t) can be found:{
0L(t) = 0L, 0R(t) = 0 06 t < T/2

0L(t) = 0, 0R(t) = 0R T/26 t < T .
(10)

In the first half-cycle,0R(t) = 0, i.e. the height of the right-hand barrier is+∞; hence
the quantum dot only couples to the left-hand lead. Conversely, in the second half-cycle,
the height of the left-hand barrier is+∞; hence the quantum dot only couples to the right-
hand lead. At the timest = T/2 and t = T , the left-hand and right-hand barriers vary
simultaneously.

For simplicity we consider that0L = 0R ≡ 0/2, i.e. the left-hand and the right-hand
barriers are symmetric in the absence of external fields, and the temperature is taken to
be zero (T = 0 K). Since the temperature in the experiments is usually low, say 50 mK
[18–20], kBT /h̄ω ≈ 0.1 (the quantum regime), so settingT = 0 K is quite reasonable.
BecausejL(t) is a periodic function, we only need to calculatejL(t) for times in the range
06 t < T .

For T/26 t < T , one findsB(t) = 0, sojL(t) = 0.
For 06 t < T/2, by using equation (9) one can obtainAα(ε, t) as

AL(ε, t) = 1

ε − ε0+ i0/2

− exp
[−t (iε0− iε + 0/2)]
ε − ε0+ i0/2

1

1+ exp((−T /2)(iε0− iε + 0/2))

AR(ε, t) =
exp

[−t (iε0− iε + 0/2)]
ε − ε0+ i0/2

1

1+ exp(−(T /2)(iε0− iε + 0/2)) .

(11)

Substituting the expressions forAL(εt) andAR(εt) into equation (8),N(t) can be derived
as

N(t) = 0
∫ µL−ε0

−∞

dx

2π

{
1

x2+ 02/4
+ 2e−0t

x2+ 02/4

1

|1+ exp((T /2)(ix − 0/2))|2
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− 2 Re

[
exp(t (ix − 0/2))
x2+ 02/4

1

1+ exp((T /2)(ix − 0/2))
]}

− 0
∫ µL−ε0

µR−ε0

dx

2π

e−0t

x2+ 02/4

1

|1+ exp((T /2)(ix − 0/2))|2 . (12)

SincejL(t)− jR(t) = eṄ(t), and for 06 t < T/2 we havejR(t) = 0, thenjL(t) = eṄ(t).
From equation (12), the time-dependent currentjL(t) can be obtained straightforwardly:

jL(t) = −e0
∫ µL−ε0

−∞

dx

2π

{
20e−0t

x2+ 02/4

1

|1+ exp((T /2)(ix − 0/2))|2

− Re

[
(0 − 2ix) exp(t (ix − 0/2))

(x2+ 02/4)(1+ exp((T /2)(ix − 0/2)))
]}

+ e02e−0t
∫ µL−ε0

µR−ε0

dx

2π

1

(x2+ 02/4)

1

|1+ exp((T /2)(ix − 0/2))|2 . (13)

In the following two subsections we shall discuss the time-dependent characteristics of
the currentj (t) for two specific conditions:µL = µR andµL > ε0 > µR.

Figure 1. jL(t) for rectangular-pulse modulations of the two barriers, where0 = 1, T = 10/0,
and µL = µR = 0. The broken and solid curves correspond toε0 = −0 and ε0 = 0,
respectively.

3.2. The symmetric case:µL = µR
WhenµL = µR ≡ µ, the second term of equation (13) is zero. The currentjL(t) becomes

jL(t) = −e0
∫ µ−ε0

0

dx

2π

{
20e−0t

(x2+ 02/4)|1+ exp((T /2)(ix − 0/2))|2

− Re

[
(0 − 2ix) exp(t (ix − 0/2))

(x2+ 02/4)(1+ exp((T /2)(ix − 0/2)))
]}
. (14)
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In equation (14) we have already changed the lower limit of the integral from−∞ to 0. In
fact, by using the residual theorem one can prove that the integral from−∞ to 0 is zero.
The characteristics ofjL(t) versust are shown in figure 1:jL(t) ≡ 0 (for µ = ε0), and
jL(t) 6= 0 (for µ 6= ε0). Consideringµ > ε0 and during one period, the currentj (t) first
flows from the quantum dot to the left-hand lead, and then flows in the opposite direction.
Although the average current〈jL(t)〉 is zero,jL(t) is not even:µL = µR 6= ε0. In fact the
time variation of the barriers will affect the phase of the electron wave-function differently
on the two sides of the barriers, cause interference, and makejL(t) 6≡ 0. In order to
illustrate this rather complex phase change, we consider the following simple example.

The example is of the quantum dot coupled only to one lead (say, the left-hand lead),
with f (ε) = δ(0) (i.e. only one electron occupies theε = 0 energy level in the lead), and we
set the height change of the left-hand barrier as follows: fort < 0, the barrier is fixed at a
finite height (0 6= 0); for 06 t < T , the barrier is maintained at+∞ (0 = 0); at t = T , the
barrier is reduced to the original height again, and maintains the height unchanged. Then,
whent < 0, the electron tunnelling between the lead and the dot reaches a steady state with
the occupation of the dot constant, and the currentj (t) = eṄ(t) = 0. When 06 t < T , the
dot and the lead are completely separated, soN(t) is unchanged and the currentj (t) = 0.
But during this time interval, the change of phase of the electron wave-function is different
in the dot and in the lead, taking the values iε0t and iεt , respectively. So att = T , an extra
phase difference i(ε0 − ε)T will emerge, which affects the currentj (t) for t > T . In the
meantime, whent > T , the quantum dot couples to the lead again. Due to the extra phase
difference mentioned above, a coherence effect will occur in the tunnelling process, which
breaks down the steady state established for the dot and the lead, and causes a nonzero
currentj (t) as shown in figure 2.

Figure 2. j (δt) versusδt for a special system consisting of a dot coupled to only one lead,
whereδt = t − T , ε0 = 1, ε = 0, and0 = 1. The curves plotted correspond toT = π/4, π ,
and 7π/4.



Transient current through a quantum dot 3049

Figure 3. The characteristics ofjL(t), displaying the turnstile effect, whereµL = 30,
µR = −30, andε0 = 0. (a)T = 15/0; (b) T = 10/0.

3.3. The turnstile effect

For µL > ε0 > µR and 0 � ω ≡ 2π/T , the dot is coupled to the left-hand lead and
separated from the right-hand lead in the first half-period. SinceµL > ε0, the electron
can tunnel from the left-hand lead to the dot. The situation will be completely reversed
in the second half-period. Because0 � ω, there is only one electron passing through the
quantum dot in every period, i.e. the turnstile effect occurs. This time-dependent feature of
the currentjL(t) is shown in figure 3.

From equation (13), one can easily calculate the average current〈jL(t)〉. Notice that
the average of the first term in equation (13) is zero; one has

〈jL(t)〉 = 1

T

∫ T

0
jL(t) dt

= − e0
T

[
e−0T/2− 1

] ∫ µL−ε0

µR−ε0

dx

2π

1

(x2+ 02/4)|1+ exp((T /2)(ix − 0/2))|2 .
(15)

For ω = 2π/T � 0, equation (15) is approximately equal to

〈jL(t)〉 = e

T π
arctan

2x

0

∣∣∣∣µL−ε0

µR−ε0

. (16)

If µL−ε0 andε0−µR are large enough compared to0, the average current〈jL(t)〉 reduces
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to

〈jL(t)〉 = e

T
= eω/2π (17)

i.e. 〈jL(t)〉 depends only on the frequencyω of the external fields, and exactly one electron
passes through the quantum dot every period.

If T is small enough (or the frequency high enough), the two barriers will vary quickly.
Finally, when 1/T ∼ 0, the electron cannot tunnel—it does not have enough time for an
electron to tunnel through the quantum dot in a period of time—so the average current
〈jL(t)〉 will deviate downward fromeω/2π .

Experimental results showing the turnstile effect were reported in references [17] and
[19]; it was manifested as a set of plateaux in theI–v curves. Here we present our
calculated time-dependent behaviour ofj (t) versust (see figure 3), and the average current
〈j (t)〉 versus 1/T (see equation (16) and equation (17)). ForI = 〈j (t)〉 versusv, only two
plateaux atI = ±eω/2π are obtained, because only one single-electron state in the dot is
considered.

4. The response to harmonic modulations

Now let us consider the case in which the external fields applied to the two barriers are
harmonic and out of phase (with a phase difference ofπ ). Thenα(t) and0α(t) are given
by {

L(t) = cosωt

R(t) = sinωt
and

{
0L(t) = 0L cos2ωt

0R(t) = 0R sin2ωt.
(18)

In the following we assume that the amplitudes of the left-hand and right-hand barriers are
equal (0L = 0R = 0/2) in the absence of external fields, and the temperature is taken to
be zero (T = 0 K). By using equations (5)–(9), one can get the time-dependent current
jL(t). From equations (8), (9) and (18), one finds

N(t) = 0
∫ µR−ε0

−∞

dx

2π

x2+ 02/4+ ω2

a

+ 0
∫ µL−ε0

µR−ε0

dx

2π

x2 cos2ωt + ((0/2) cosωt + ω sinωt)2

a
(19)

in which a denotesa = [(x + ω)2 + 02/4][(x − ω)2 + 02/4]. By using equation (6), we
obtain

B(t) = −
∫ µL−ε0

−∞

dx

π
0 cosωt

× (0/2)(02/4+ x2+ ω2) cosωt + ω(02/4− x2+ ω2) sinωt

a
. (20)

Substituting equations (19) and (20) into equation (5), the time-dependent currentjL(t) can
be written as

jL(t) = e
∫ µL−ε0

µR−ε0

dx

2π
02 cos2ωt

(02/4+ x2) sin2ωt + ω2 cos2ωt − 0ω cosωt sinωt

a

+ e
∫ µL−ε0

0

dx

2π

02/4− x2+ ω2

a
0ω sin 2ωt. (21)
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Figure 4. jL(t) for harmonic modulations of the two barriers. (a)jL(t) versusε0 at different
times (ωt = 0 andωt = π/4), for µL = −µR = 0.70, andω = 30. (b) jL(t) versust for
different values ofε0, for µL = −µR = 0.10, andω = 0.30: the two solid curves correspond
to ε0 = 0 andε0 = 0.20, and the broken curve shows0L(t) versust .

Figure 4(a) showsjL(t) versusε0 at different times. The curves forjL(t) versust for
different values ofε0 are given in figure 4(b).

Now we consider two special examples.

(1) µL = µR, or the source–drain voltagev = µL − µR = 0. Then equation (21)
reduces to

jL(t) = e0

8π
sinωt ln

02/4+ (µL − ε0+ ω)2
02/4+ (µL − ε0− ω)2 (22)

and

N(t) = 0
∫ µL−ε0

−∞

dx

2π
(x2+ 02/4+ ω2)/a

is time independent. Since the change of the barriers affects the phase coherence differently
in different parts of the system,jL(t) 6= 0 (for µL = µR 6= ε0). From equation (22) it is
clear that when0 � ω, two peaks emerge at the locations ofε0 = µL ± ω, i.e. the photon
is present and assists the tunnelling.



3052 Qing-feng Sun and Tsung-han Lin

Figure 5. Average currents〈j (t)〉 versusε0 for harmonic modulations of the two barriers,
corresponding toω = 20 andω = 0.50, whereµL = −µR = 0.20 and0 = 1.

(2) The average current〈j (t)〉. From equation (21) we can derive the average current
〈j (t)〉:

〈j (t)〉 = e02

8

∫ µL−ε0

µR−ε0

dx

2π

x2+ 3ω2+ 02/4

a
. (23)

When 0 < ω, the main resonant peak is split into two peaks at±h̄ω from the original
main peak which has now disappeared (see figure 5). This is different from the situation
studied in reference [9] in which two harmonic external fields are applied to the left-hand
and right-hand leads symmetrically, leading to the main peak splitting into a set of peaks. In
our situation only two peaks emerge. This can be explained by photon-assisted tunnelling,
i.e. the electron can tunnel between the lead and the quantum dot by absorbing or emitting
a photon. SinceL(t) = cosωt = (eiωt + e−iωt )/2 andR(t) = sinωt = (eiωt − e−iωt )/2i,
the phase of the electron wave-function will vary between±iωt when the electron tunnels
through the left-hand or right-hand barrier, leading to only two peaks at±ω away from the
original main peak. On reducingω, these two peaks will approach each other, and finally
become one single peak—the original main peak.

5. Conclusion

In this paper, we have used the nonequilibrium-Green-function method to study the time-
varying behaviour of electrons tunnelling through a quantum dot with two time-dependent
barriers. The main result presented is the expression for the transient currentj (t) for
some special cases. We find that the transient currentj (t) displays a diverse behaviour in
different situations, exhibiting a turnstile effect, photon-assisted tunnelling, etc. Except the
〈j (t)〉 versusv turnstile effect, the results presented in this work have not been observed
experimentally.
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